

Por and the second seco

COURSE ENGI -5101 The Engineering Profession

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

TEP5101_4_8.ppt

WEB

www.engr.mun.ca/~

sbruneau/proeng/

Definition of Engineering Design

Engineering design may be defined in simple terms as the process of developing workable plans for the construction or manufacture of devices, processes, machinery or structures to satisfy some dentified need. CEAB (accreditation board) formally defines it as:

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4 Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

 FILES

 Image: TEP5101_4_8.ppt

 TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/

There are 9 lectures left. The plan is to do the following:

Discuss Engineering Design best practices	cuss Engineering Design best practices 2 lectures					
Engineers and Business	1 lecture					
Intellectual Property (IP) Basics	operty (IP) Basics 1 lecture					
Safety and Risk Discussion	1 lecture					
Appropriate technology and sustainability	iate technology and sustainability 1 lecture guest					
The Profession and Duty 1 I	ecture guest					
Ethics and nanotechnology	1 lecture guest					
Contingency 1 lecture						
TOTAL	9 lectures					
Remaining 10% of class Q and A value will to questions related to the three guest sp lectures highlighted in red above. These be administered on the final exam paper.	be assigned beaker questions will					

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

TEP5101_4_8.ppt

www.engr.mun.ca/~ sbruneau/proeng/

TEP5101_4_8.pdf

WEB

The Design Process:

Needs Assessment

What is the problem? What are the existing solutions? Whome does it affect? What does the solution need to do? What is desirable? What are the constraints?

Synthesis

What ideas are there for solving the problem.

Design Analysis

Is the design idea feasible? Best practices used? Priorities given?

Implementation

How will the solution be built? Model or simulation required? Prototype required for testing?

Testing and validation

How will we evaluate solution and measure results or outcomes?

Recommendations

Are we ready to clearly state the design specifications for construction

So you should all know this off-by heart by NOW !!!!

FOR EXAMPLE!!!!!

over

Design activities are carried out in discrete stages in a typical waterfall approach, also known as the "drawing board" approach, because designers must go "back to the drawing board" (start over) when design solutions do not work out as anticipated.

MEMORIAL UNIVERSITY		Results					
TS.							
and the second second			Α	В	С	D	E
			0.78799174	0.87677244	0.99348605	0.23781547	0.24437526
COURSE			0.24910355	0.79708654	0.39825661	0.4894876	0.22079456
ENGI -5101			0.65729261	0.46901063	0.36471191	0.04697233	0.63468059
			0.48205396	0.52657506	0.70503426	0.35280176	0.40935313
Profession			0.46328137	0.0774365	0.71517444	0.9394662	0.46843638
INSTRUCTOR			0.09762717	0.70884867	0.81407539	0.24571711	0.72497819
Dr. Steve Bruneau	SIMULATION DA	ATA	0.00773315	0.39906447	0.42344939	0.90776976	0.22209006
EN.4013		\17 \	0.15857663	0.4181197	0.56488165	0.91405841	0.3578349
Ph 737-2119 Shruneau @ mun ca			0.59242455	0.17894389	0.61926672	0.02978346	0.50789172
	IO PROVE		0.41285757	0.71470398	0.31906988	0.79658426	0.21587647
TOPIC		C	0.8855586	0.46534556	0.3701164	0.12452538	0.33415497
	BRILLIANCE O	DT	0.28231467	0.17509894	0.85801024	0.72984635	0.94731238
			0.82370951	0.03235362	0.95622299	0.27726297	0.76619879
	I HEUKEIVI		0.86245578	0.21094811	0.93272287	0.48265505	0.04960646
			0.38953201	0.3665743	0.33754918	0.28178635	0.39637009
			0.80522838	0.63509032	0.43333321	0.97677807	0.96198172
			0.35928212	0.14878634	0.44201417	0.23251612	0.83375154
			0.72099806	0.75212293	0.81061259	0.23756284	0.48518996
TEXT REF.			0.13329065	0.31602317	0.87489249	0.5304632	0.26191565
			0.2588109	0.89039838	0.81380512	0.59139955	0.48488759
			0.99314419	0.34635186	0.73292414	0.25933239	0.29230491
			0.88041055	0.11473455	0.01934078	0.15717245	0.93780676
			0.72332226	0.80195173	0.1792961	0.07832254	0.41154579
			0.95925002	0.41696749	0.24905812	0.2111233	0.00256536
FILES			0.00580885	0.65322119	0.49666074	0.91641276	0.40573275
			0.26004883	0.3010126	0.45604195	0.99935168	0.91271048
			0.1508427	0.84418604	0.96241158	0.05548096	0.94093154
			0.63750743	0.08979734	0.11100042	0.34646613	0.09994533
· Aub			0.17176871	0.85518113	0.94522781	0.29368901	0.77444161
WEB			0.15186964	0.53105474	0.69991523	0.07876247	0.0023978
www.engr.mun.ca/~			0.72306385	0.73755246	0.71402806	0.68090612	0.76015636
sbruneau/proeng/			0.42140074	0.39036871	0.02247591	0.94725973	0.70692042

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

TEP5101_4_8.ppt TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~

sbruneau/proeng/

TWO MAIN TYPES OF DESIGN PROCESSES - ON THE EXAM

<u>wo main types of Design processes:</u>

- Evolutionary Design

leans solutions are based on improvements o existing solutions

<u>Competitive analysis</u> is the process of comparing a design to a similar design or product

<u>Benchmarking</u> is the determination of how well a finction is performed

everse engineering is the process of decomposing an existing plution to understand how it has been constructed and where s design limitations lay.

- Innovative design

n innovation is a new or original idea nd implies a novel way of solving a roblem.

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

- FILES
- TEP5101_4_8.ppt

TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/ Complex design relies on a combination of evolutionar wand NEER innovative design. Henry Petroski presents entertaining MAN case studies of the common zipper, paper clips and pop MAN cans to illustrate evolutionary and innovative design approaches. His book is entitled "Invention by Design".

The term Qwerty is used to describe:

- 1. A relic bathymetric feature left from de-glaciation
- 2. The mechanical design of an 1870's typewriter
- 3. The marking scheme on a MENSA IQ exam
- 4. Term for one's age between 25 and 30
- 5. All of the above

Multiple Choice:

6. Absolutely nothing

ILE & NOW ATTRIVITE BY THE AUGUST

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

TEP5101_4_8.ppt TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/

Nth-Generation Design: Refining the Typewriter (1867-Present)

Early eighteenth- and nineteenth-century typing machines were designed to print raised characters that could be read by the blind.²⁷ The British engineer Henry Mill (although a prototype of his 1714 design was apparently never constructed), William A. Burt (whose 1829 machine featured a manually rotated circular carriage), Xavier Progin (who in 1833 marketed a circular device for the blind), Charles Thurber (who developed an automatic means for rotating the circular carriage on his typewriter in 1845), and others developed clever devices as the years went by, but the invention of the modern typewriter did not occur until 1867.²⁸

Christopher Latham Sholes, together with Carlos Gidden and Samuel W. Soule, developed a carriage that would shift automatically to the left as each character was typed. In addition, the keys of their typewriter all struck the same point on the platen as they were typed. i.e., pianoforte movement (Progin's 1833 machine featured a similar movement). In fact, Sholes referred to the device as the "literary piano"—a very descriptive name. They were issued a patent for this work in 1868.

Pearson/Prentice H

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

sbruneau/proeng/

ERGONOMIC AND MECHANICAL GOALS

Sholes recognized that their machine, although satisfactory, was imperfect. One of its principal flaws was that quickly typed keys tended to collide or jam. He decided to separate the most frequently used keys on the keyboard (corresponding to the most frequently used letters of the English alphabet). Of course, a simply random placement of these keys about the keyboard was unacceptable since the user might then be required to strike the keys with awkward and difficult motions. Sholes needed to satisfy two goals: a mechanical one (separation of the keys from one another) and an ergonomic one Iplacement of these keys in a configuration that would aid rather than hinder the typist). His solution was the QWERTY layout, so named because of the first six letters along the top left of the keyboard. Developed over a five-year period involving more than 30 different models, the QWERTY layout became the standard typewriter keyboard configuration (Figure 1.10).

Ref: Engineering By Design 2nd edition - Gerard Voland Pearson/Prentice Hall

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

TEP5101_4_8.ppt TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/

Other, more efficient keyboard layouts have been developed in recent years (e.g., the Dvorak simplified keyboard shown in Figure 1.11). One might then ask why the QWERTY configuration remains the standard for today's computer keyboards. The answer: entrenchment! Sometimes it is very difficult to change people's habits even when such change offers substantial benefits. The QWERTY layout is most familiar to typists, programmers, and other users of keyboards. After all, typing classes usually focus on the QWERTY system; as a result, most professional typists expect to use this layout. Industry has been somewhat reluctant to adopt new, efficient keyboard layouts because of the retraining that would be necessary for their typists to become adept with these layouts. Such retraining would necessitate a temporary loss in productivity and efficiency (although long-term benefits of the new keyboard layouts could be substantial). Because of these factors, most keyboard manufacturers are very cautious about introducing any changes in their products that might alienate their customers and harm their sales. Although other keyboard layouts may indeed be more efficient than the QWERTY system, these new layouts have been introduced to the market in very small doses, thereby allowing people to become familiar with them while limiting risks to the manufacturers. (Of course, many computer software systems now allow the user to alter the keyboard layout electronically, replacing the QWERTY system with one more suited to the needs of the user. However, keyboards themselves continue to be manufactured with the original QWERTY layout.)

In 1873, the Remington Arms Company bought the patent rights to the improved design from Sholes and his business partner, James Densmore, for \$12,000. The Remington Model I was released to the public and soon thereafter Mark Twain submitted to a publisher the first manuscript typed on this machine.

Ref: Engineering By Design 2nd edition - Gerard Voland Pearson/Prentice Hall

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

TEP5101_4_8.ppt TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/

FURTHER IMPROVEMENTS IN NTH-GENERATION DESIGNS

Each later generation of the basic typewriter design continued to include improvements developed by others. These improvements included:

- the shift-key mechanism (1878)
- the first portable machine (the "Blick"), developed by George C. Blickensderfer (1889)
- the front-stroke design (1890)
- electrically powered systems, first developed and manufactured by Thaddeus Cahill in a 1901 form that was a commercial failure because of its exorbitant cost: \$3,925 per machine; the much more successful IBM Electromatic, developed by R. G. Thomson over an 11-year period, was released in 1933
- the portable electric typewriter (1956)
- a stationary carriage with IBM spherical ball elements for changing font styles (1961)
- the IBM 72BM, an electronic typewriter with a magnetic tape that provided it with a memory (1965)
- rotating print wheels (1978)
- a portable electronic typewriter (Olivetti's Praxis in 1980)

A successful engineering solution is only satisfactory; improvements can—and should—always be made through *N*th-generation design efforts.

Ref: Engineering By Design 2nd edition - Gerard Voland Pearson/Prentice Hall

	Good enaineerina desian practices enable difficult problems				
MEMO UNIVER	to be solved.				
Professional Andrews	Seven (7) Characteristics of good practices are:				
COURSE ENGI -5101	1 - List criteria, requirements and constraints				
The Engine Profession	Criteria are general factors that can be listed, that directly affect the				
INSTRUCT	solution or the process of obtaining a solution, and that may aid in				
Dr. Steve B EN.4013 Ph 737-2119 Sbruneau @ n	the choosing of a best solution				
TOPIC	Requirements and constraints are criteria with more specific				
	meanings either properties that a solution must possess, or				
P Engineering	, limitations on the solution or the process. They must be objective ar				
and P	quantitative whenever possible so that the performance or				
	characteristics of a solution can be measured and defended.				
TEXT REF.	2. Jalamatifi i Ualama ang ditipatin Talaka				
Prof. Engin.	3 - Identify Users and their Tasks				
Ch 3, 15-21	The discipline of human factors engineering and ergonomics is				
FILES	devoted to the study of the capabilities and limitations of the human				
TEP510	users so that designers can meet requirements while preserving safety				
TEP510	and public welfare.				
WEB www.engr.m	un.ca/~				
sbruneau/p	roeng/				

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

TEP5101_4_8.ppt
TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/

Continued characteristics of good practices:

4 - Identify effects on all environments

All engineering works consume resources and affect their environment, natural and/or organizational/corporate environments. Continued scientific research is vital to predicting effects and mitigating problems.

2 - Generate Multiple Solutions

Engineering design often allows for many possible solutions. Only after thorough analyses and decision making techniques are applied should the most appro

Selection criteria are used for guiding the process for identifying the optimal solution.

"Gentlemen, I've decided to retire. The new chairman will be the first one to throw a six."

INSTRUCTOR Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES

WEB

www.engr.mun.ca/~ sbruneau/proeng/

Continued characteristics of good practices:

6 - Select Optimal Solution

The solution that best satisfies the selection criteria (maximizes benefits, minimizes costs) while including consideration of one's responsibility toward one's client, employer, colleagues and society – is referred to as the optimal solution.

5 - Make defensible decisions

It is the engineer's responsibility to understand the applied science involved in the solution – opinion is not enough. To ensure public safety designs must be tested and validated before products or constructed facilities are released for public use.

7 - Use Best Practice

Best that solutions are based on recognized methods, procedures, codes and standards. These evolve with advances in applied science and technologies but must do so in a methodical fashion to guarantee safety. For instance; originality is not a highly prized aspect of seatbelt design.

"Heuristic" means a "rule of thumb" T or F?

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

FILES
TEP5101_4_8.ppt

TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~ sbruneau/proeng/ TERMS used to define design requirements:

Heuristics

A very general rule of thumb like, "make it easy to use"

Guidelines

Provides more information like approximate ranges for various aspects of design, but, is still general in nature.

Standards

Increasingly defined

detail

Provide more direction than a guideline by stating technical requirements that normally must be met for a particular industry.

Specifications

A description of the technical requirements for a specific project in sufficient detail that someone else can build or implement what was envisioned by the designer.

how to: Build an iPhone website or app part 1b

INSTRUCTOR

Dr. Steve Bruneau EN.4013 Ph 737-2119 Sbruneau @ mun.ca

TOPIC

PART 4

Engineering Ethics and Practice

TEXT REF.

Text "Intro to Prof. Engin. In Canada 3rd ed." Ch 3, 15-21

TEP5101_4_8.ppt TEP5101_4_8.pdf

WEB

www.engr.mun.ca/~

sbruneau/proeng/

The Design Process:

Needs Assessment

What is the problem? What are the existing solutions? Whome does it affect? What does the solution need to do? What is desirable? What are the constraints?

Synthesis

What ideas are there for solving the problem.

Design Analysis

Is the design idea feasible? Best practices used? Priorities given?

Implementation

How will the solution be built? Model or simulation required? Prototype required for testing?

Testing and validation

How will we evaluate solution and measure results or outcomes?

Recommendations

Are we ready to clearly state the design specifications for construction

The use-centred spiral approach ensures that testing is an integral part of design development. DP represents the design problem and includes the users, the task, and associated environments that must be considered. P1, P2, and P3 represent a progression of prototypes or models used for testing. D1 starts the feasibility cycle; D2 starts the preliminary design cycle; D3 begins the detailed design cycle; and D4 represents the final design.

Design activities are carried out in discrete stages in a typical waterfall approach, also known as the "drawing board" approach, because designers must go "back to the drawing board" (start over) when design solutions do not work out as anticipated.

